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Abstract—Machine-learning-assisted side-channel analysis
(ML-assisted SCA) automates the procedure of analyzing
side-channel activities to reconstruct secrets. Although
ML-assisted SCA does produce promising results, it is hard
to determine whether its machine-learning model tends to
reconstruct secrets or generate new instances. In this paper,
we revisit the first general ML-assisted SCA framework for
media software (Yuan et al. USENIX Security 2022), which
we refer to as the Manifold-SCA framework, with a case
study of reconstructing images from cache activities. We
show that Manifold-SCA tends to generate images more than
reconstruct them. Inspired by the autoencoder implemented
in the Manifold-SCA framework, we theoretically and
experimentally show that an autoencoder is sufficient to
reconstruct images from cache activities. Through three
ablation studies, we show that an autoencoder outperforms
the Manifold-SCA framework under all scenarios. In the end,
we apply an autoencoder to analyze practical cache activities
collected by a profiling-based Prime+Probe attack, and show
that an autoencoder can reconstruct partial pixel-related
activities, but these activities are insufficient to reconstruct
images due to the information loss in the activities.

1. Introduction

Side-channel attacks collect activities of victim software
on shared hardware resources to infer secrets [1, 2, 3, 4,
5, 6]. The procedure of analyzing side-channel activities
is called side-channel analysis (SCA). SCA is often done
manually to locate leakages and build algorithms to re-
construct secrets. In recent years, due to the rapid devel-
opment of machine-learning techniques, machine-learning-
assisted SCA (ML-assisted SCA) is proposed to automate
the analysis procedure [7, 8, 9, 10, 11, 12, 13, 14]. Such as
facilitating website fingerprinting attacks [7, 8, 9] or power
analysis attacks [10, 11, 15, 16, 17]. Although ML-assisted
SCA describes a bright future for side-channel analysis,
many existing approaches focus on analyzing specific side-
channel activities to infer particular secrets. Namely, there
is a lack of a general framework to analyze various side-
channel activities to recover various types of secrets.
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Such a situation has been changed since 2022, when
Yuan et al. [12] proposed the first general ML-SCA frame-
work that can analyze multiple micro-architecture activ-
ities to reconstruct various types of media inputs, such
as images, texts, and audio. Unlike traditional SCA on
media software [18, 19], where an attacker reconstructs
inputs pixel-by-pixel, Yuan et al. [12] hypothesize that the
perception-level (e.g., hairstyle) connection between media
inputs and activities resides in a joint manifold space. The
proposed framework leverages a combination of an autoen-
coder [20, 21] and a discriminator network [22, 23, 24, 25]
to learn this space and reconstruct media inputs from side-
channel activities. Notably, despite the novel design of the
framework, another contribution is its ability to automati-
cally analyze side-channel activities without knowledge of
the victim software. That is, the victim software is treated
as a black-box during the automated analysis.

In this paper, we revisit the first ML-assisted SCA
framework for media software [12], which we refer to
as the Manifold-SCA Framework, with a case study of
reconstructing images from cache activities. Through our
reproducibility and replicability evaluation, we find that
the reported performance of the framework was overly
optimistic due to a mistake in interpreting the evaluation
metric. Furthermore, we notice that the framework, a deep-
learning model, is trained in a manner similar to generative
adversarial networks (GANs) [26], which are known for
generating new instances from its training set. It is prob-
lematic in side-channel analysis, because the goal of SCA
is to reconstruct secrets, but not generate new instances.
However, the boundary between reconstruction and genera-
tion is vague. We only have confidence to say an output of
a model is reconstructed when it is identical to its reference
data (original data). When they are not identical, we cannot
conclude if the different parts are incorrectly reconstructed
or newly generated.

To determine the extent of reconstruction and generation
of an image reconstructed by ML-assisted SCA, we leverage
the similarity among reconstructed images, their reference
images, and other images. We note that a reconstructed
image should be more similar (or even identical) to its ref-
erence image than other images. Therefore, we measure the
similarity between a reconstructed image and its reference



image and compare the result with that between it and other
images. We name this evaluation metric as distinguishability
evaluation. A well-reconstructed image should have higher
similarity with its reference image than other images, while
a generated image has no specific relationship with a single
image.

Our evaluation shows that the Manifold-SCA framework
tends to generate images more than reconstruct them. Being
inspired by the autoencoder in the Manifold-SCA frame-
work, we hypothesize that an autoencoder alone is suffi-
cient to reconstruct images, while a discriminator network
misguides it to generate images. We compare the image
reconstruction task with a denoise task of an autoencoder,
and show that reconstructing images from cache activities
aligns with denoising and reconstructing data, which can be
done by an autoencoder. Through three ablation studies, we
verify the hypothesis and demonstrate that an autoencoder
performs significantly better than the Manifold-SCA frame-
work. We further apply the autoencoder, implemented in the
Manifold-SCA framework, to analyze practical cache activ-
ities collected by a profiling-based Prime+Probe attack [6].
Our results show that although an autoencoder can recon-
struct partial pixel-related activities, they are insufficient to
reconstruct images. The primary reason for this limitation
is the huge pixel-dependent information loss in practical
activities.

In summary, we make following contributions in this
paper:

• Through the R+R (Reproducibility + Replicability)
study, we show that the Manifold-SCA framework
tends to generate images more than reconstruct them.
This behavior deviates it from the goal of side-
channel analysis, which aims to reconstruct existing
secrets.

• With three ablation studies, we theoretically and
experimentally show that an autoencoder is sufficient
to reconstruct images from cache activities, which
significantly outperforms the Manifold-SCA frame-
work.

• We demonstrate that an autoencoder can reconstruct
partial pixel-related activities from practical cache
attacks, but these activities are insufficient to re-
construct images due to the information loss in the
activities.

In this paper, we provide 10 reconstructed images and
their reference images for each experiment in Figure 7. We
release the artifact at our Github repo.

2. Background

In this section, we introduce background and related
works on reconstructing images from cache activities.
Cache Attacks. Cache on modern x86 processors is a set-
associative structure that stores recently accessed memory.
Cache attacks [5, 27, 1, 6] are attacks that exploit the
observation of cache activities to infer secrets from a victim
process. L1D Prime+Probe attack targets the L1 data cache,
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Figure 1. The Manifold-SCA framework overview.

which is the smallest but fastest cache in the memory hier-
archy. It works by filling the cache with attacker’s data and
measuring the latency of accessing them. The attack used
by Yuan et al. [12] is a profiling-based L1D Prime+Probe
attack [6, 28]. It repeatedly measures the latency of access-
ing attacker’s data to profile the entire L1D cache activities.
We also use this attack to collect practical cache activities
in our evaluation.
Secret-dependent Cache Access. Cache attacks are pow-
erful as they can break cryptographic algorithms that are
mathematically secure [1, 29, 30, 31]. However, the attacks
require the target to be implemented with secret-dependent
cache accesses, which an attacker can observe and establish
a relationship with the secrets. That is, after locating secret-
dependent cache accesses, an attacker needs to build an
algorithm to reconstruct secrets from them.
Cache Timing Attacks on Media Software. Compared
to cryptographic libraries, media software is more complex
and processes much larger inputs. Therefore, locating secret-
dependent cache accesses within massive cache activities
and connecting them with media inputs is challenging.
Hähnel et al. [18] first demonstrated that an attacker could
exploit cache leakages to reconstruct JPEG images under
a compromised operating system. Specifically, an attacker
single-steps the victim software to monitor cache accesses
of pixel-dependent operations only. After collecting pixel-
dependent cache activities, an attacker manually constructs
an algorithm to map them back to pixel values. Although
the collected activities are noise-less, it is still impossible
to reconstruct images identical to their originals. This is
because, during the transformation of pixel values to cache
activities, multiple values are mapped to the same cache set.
Consequently, an attacker can only reconstruct partial bits
of a pixel byte from each pixel-dependent cache access.
The Manifold-SCA Framework for Image Reconstruc-
tion. Mapping pixel-dependent cache activities back to
pixels is challenging, especially when an attacker is unfa-
miliar with the software. To systematically analyze side-
channel activities to reconstruct media inputs, Yuan et al.
[12] propose the Manifold-SCA framework, a deep-learning
model, to automate the reconstruction procedure under a
black-box scenario. The knowledge about victim software
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is no longer required as the entire analysis is automated.
Instead of focusing on the mapping from pixel values to
cache activities, the framework operates under a hypothesis
that the perception-level connection between cache activities
and images can be presented in a joint manifold space.
The “perception-level connection” refers to the relationship
between high-level features of an image, such as hairstyle
or gender, and cache activities, which can be learned by a
deep learning model.

Figure 1 presents an overview of the Manifold-SCA
framework. It consists a reconstructor, R, and two discrim-
inators, DTF and DID. The reconstructor is built with an
autoencoder [20, 32, 21], which is enhanced by attention
modules [33]. Two discriminators are built with linear clas-
sifiers: DTF distinguishes whether an image is produced by
R or not; DID identifies the identity of individuals in the
images.
GAN-like Training Process. The Manifold-SCA frame-
work is trained in a similar manner as generative adversarial
networks (GANs) [24, 26, 22, 23, 24, 25], as the training of
R is guided by DTF and DID. The training process involves
alternating updates to the reconsructor and discriminators.
Initially, DTF and DID are trained with images from the
train set and images produced by untrained R. Next, R
is trained with cache activities to output images that can
pass the tests of DTF and DID. The punishment for not
passing the tests is converted to a loss function to update
the networks of R. These two steps are repeated periodically
until the performance of R is satisfactory.
Autoencoder in the Manifold-SCA Framework. Although
the autoencoder in R is trained with two discriminators,
its loss function also contains a reconstruction loss that
measures the similarity distance between its output and
input. We note that autoencoders are known for learning
a representation of data and reconstructing data from the
representation [20, 32]. They work by encoding a sample
x to a hidden representation h using an encoder function
f , and then decoding it back to a reconstructed sample x̂
using a decoder function g. The goal is to find a hidden
representation h that can map any sample x to x̂. Due to
its advantage in finding meaningful representations of data,
autoencoders are being used to denoise data [32, 15] and
reconstruct data [34].
Related Work. Hähnel et al. [18] first reconstructs images
pixel-by-pixel from pixel-dependent cache activities. Yuan
et al. [13] first applies a generative model to reconstruct
images from instrumented cache activities. Yuan et al. [12]
first proposes a general framework to analyze side-channel
activities to reconstruct media inputs. Yeh and Sekiya [35]
improves the Manifold-SCA framework to achieve better
performance.

3. Manifold-SCA R+R Evaluation

In this section, we evaluate the reproducibility and repli-
cability of the Manifold-SCA framework in reconstructing
images from cache activities. We base our evaluation on
its artifact, whose reproducibility has been validated by the

USENIX Artifact Evaluation Committee. We show that the
performance reported by the paper was overly optimistic due
to a misinterpretation of the evaluation metric.

3.1. Evaluation Objective

The objective of our evaluation is to validate whether
the Manifold-SCA framework can reconstruct images from
cache activities with similar performance reported by the
paper.
Source Images. The images to be reconstructed are sourced
from the CelebA dataset [36], which comprises facial images
of celebrities with 10,177 identities. Yuan et al. [12] crop
each image to 128 × 128 pixels and force the face being
positioned at the center.
Cache Activities. Two types of cache activities are an-
alyzed to reconstruct images: instrumented and practical.
Instrumented cache activities are collected using Intel Pin,
a dynamic binary instrumentation tool. These activities con-
tain cache accesses for each memory operation executed by
the victim software. Practical cache activities are collected
through a profiling-based Prime+Probe attack [6, 28], which
obtains timing results through repeated priming and probing
the L1D cache.
Evaluation Metric. Yuan et al. [12] utilize a commercial
face comparison API, Face++ [37], to assess the frame-
work’s performance. The API returns a confidence score and
three confidence thresholds to determine if two images are
from the same person with three error rates (0.1%, 0.01%
and 0.001%). Since Yuan et al. [12] claims to evaluate the
performance with over 99.9% confidence scores 1, we be-
lieve the authors use the 0.1% error rate threshold. Namely,
two images are considered from the same person if the
confidence score is higher than the confidence threshold of
0.1% error rate.

TABLE 1. REPRODUCED RESULTS OF MATCHING RECONSTRUCTED
IMAGES WITH THEIR REFERENCE IMAGES (MATCH / NON-FACE).

Yuan et al. [12] Misinterpreted
Metric

Correct
Metric

Instrumented 43.5% / 2.0% 41.7% / 1.5% 8.7% / 1.5%
Practical 36.9% / 0.8% 39.0% / 0.7% 10.6% / 0.7%

3.2. Reproducibility Evaluation

First, we introduce two inconsistencies between the pa-
per and the artifact. Next, we correct them and reproduce
the results.
Inconsistency: Undocumented Refiner. We find that
the artifact always modifies the image produced by the
Manifold-SCA framework with an external deep-learning
model, a process not referenced in the paper. We name
it Refiner as it visually refines framework’s output to be
more similar with those from the CelebA dataset. Although

1. Please see the first sentence on the right column of page 10 of [12].



the option of refining images can be “optionally” disabled
through a flag, this feature is actually hardcoded to be
always enabled (GitHub Link). We manually disable the Re-
finer for the evaluation to align with the paper’s description
of the framework. A detailed analysis of Refiner is provided
in the Appendix A.
Inconsistency: Misinterpreted Evaluation Metric. Recall
that the Face++ API returns a confidence score and three
confidence thresholds after each query. We find that the
artifact does not use any of the thresholds to determine
if two images are from the same person. Instead, it uses
a fixed threshold of 50 to interpret the confidence score
(GitHub Link). In practice, the threshold of 0.1% error rate
is always 62.327 for images provided by the artifact, which
is higher than the fixed threshold utilized by the artifact. It
means that more images would be considered from the same
person with the fixed threshold than the actual threshold.
Consequently, the performance reported by the artifact is
likely to be higher than the actual performance. During the
evaluation, we measured the framework’s performance with
both misinterpreted and corrected evaluation metrics.
Reproduced Results. We reproduce the results with all
CelebA images, which is 1,000, and their corresponding
instrumented and practical cache activities provided by the
artifact. Since the artifact provides pre-trained models to
analyze them, we do not train them from scratch. We report
the face matching rate and non-face rate of the recon-
structed images in Table 1. As illustrated in the table, we
can reproduce the results consistent with the paper using
the misinterpreted metric. However, after correcting it, the
framework’s performance is significantly reduced (79% and
73% respectively). Hence, we conclude that the results of
analyzing cache activities to reconstruct images cannot be
reproduced with the correct evaluation metric.

3.3. Replicability Evaluation

We replicate the results by re-collecting cache activities
and training the framework from scratch. First, we introduce
the procedure of replicating the results. Next, we present the
replicated results.
Base Setting. When collecting cache activities, we disable
Address Space Layout Randomization (ASLR) to prevent
addresses being randomized. To align with the setting de-
scribed in the paper, we build the train set and test set with
162,770 and 19,962 images.
Instrumented Activities Collection. We collect
instrumented cache activities by instrumenting
libjpeg-turbo library (version 2.5.1) with scripts
provided by the artifact. We train the framework with script
recons_image.py on an NVIDIA RTX A6000 GPU.
Practical Activities Collection. The results of practical
cache attacks largely depend on hardware environment. To
minimize the difference between our setting and the arti-
fact’s setting, we target the same libjpeg-turbo library
used by the artifact. We collect practical cache activities

with scripts provided by the artifact 2 on an Intel Core i7-
9750H CPU, running Ubuntu 20.04 LTS. Since the artifact
utilizes an empirical threshold to process the timing results,
we also empirically determine the threshold on our platform.
We documented the procedure in the Appendix B.

According to the instructions, we should train the model
with script pp_image.py. However, we find this script
implements two different network architectures: one similar
to the one described in the paper and another is completely
different. Specifically, the former network lacks an attention
module, while the latter involves the training of Refiner. To
align with the paper, we add the attention module to the
former network and train it with instructions provided by
the artifact. We train the model on an NVIDIA RTX 4070ti
GPU.
Determine Well-trained Model. We note that Yuan et al.
[12] did not mention how to determine if a model is well-
trained. To ensure the results being evaluated are produced
by the most well-trained model, we measure the structure
similarity (SSIM) [38], a commonly used metric that mea-
sure the similarity between two images, between recon-
structed images and their reference images (in the test set)
after each epoch. We select the model with the highest
average SSIM score as the well-trained model.

TABLE 2. REPLICATED RESULTS OF MATCHING RECONSTRUCTED
IMAGES WITH THEIR REFERENCE IMAGES (MATCH / NON-FACE).

Yuan et al. [12] Misinterpreted
Metric

Correct
Metric

Instrumented 43.5% / 2.0% 39.3% / 1.2% 8.6% / 1.2%
Practical 36.9% / 0.8% 32.0% / 1.2% 5.2% / 1.2%

Replicated Results. We train two models with default
hyperparameters and settings provided by the artifact. To
be comparable with the reproduced results, we evaluate the
performance using the same images that are used in the
reproducibility evaluation. We use both misinterpreted and
corrected evaluation metrics to measure the performance and
present the results in Table 2.

According to the table, we are able to replicate re-
sults consistent with the reproduced results. However, after
correcting the evaluation metric, the performance is sig-
nificantly lower than the performance reported by the pa-
per [12]. Therefore, we conclude that we cannot replicate the
results of analyzing cache activities to reconstruct images
with the correct evaluation metric.

4. Discussion: Reconstruction vs Generation

After reproducing and replicating the results, we find
it hard to interpret if the Manifold-SCA framework rea-
sonably analyzes cache activities, as evidenced by the low
face-matching rate. Although the framework does produce
images after the automatic analysis, it is unclear whether
these images tend to be reconstructed or generated. Namely,

2. We made necessary but minimum changes to successfully run the
script.

https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/a914a4020d9f9f725ac4713772bf309f07b2b1c6/code/output.py#L208
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/a914a4020d9f9f725ac4713772bf309f07b2b1c6/tool/face_similarity.py#L88


we cannot tell how much content of an image is inherited
from its reference image and how much is generated by
learning the distribution of the training set.

We note that it is essential to ensure ML-assisted SCA
reconstructs images rather than generates new images. As
the goal of side-channel analysis is to reconstruct existing
data belonging to a victim, not to generate new data that
does not exist in reality.

4.1. Distinguishability Evaluation

To help investigate whether the Manifold-SCA frame-
work tends to reconstruct or generate images, we propose
to evaluate the distinguishability of the framework’s outputs.
The reason is that a reconstructed image inherits features
from its reference image, and these features are likely to
be not shared with other images. Therefore, a reconstructed
image should be more similar to its reference image while
being less similar to other images in the dataset. In other
words, the similarity between a reconstructed image and its
reference image should be higher than that between it and
other images. We name the difference in two similarities
as Distinguishability. Hence, higher distinguishability on
images denotes that the model tends to reconstruct images,
while lower distinguishability on images denotes that it
tends to generate images.
Distinguishability Evaluation Metric. To measure the
distinguishability of an image, we compare the similarity
between a reconstructed image and its reference image with
the similarity between it and other images in the dataset. We
use the success rate of identifying the reference image from
a set of images as the distinguishability metric. We note that
similar concepts have been used in previous ML-assisted
SCA works [7, 8] that classify if a given side-channel
activity is related to a specific website. The difference is
that the comparison between similarities is implicitly con-
ducted by deep-learning models (e.g. LSTM [39]) in these
works, while we explicitly conduct the comparison in our
evaluation. We formulate the distinguishability evaluation
metric for evaluating reconstructed images as follows:

Given a set IMG with N images, an imgi from
it, which is unknown to the attacker, is processed
by the victim. An attacker can reconstruct img′i
with the pre-trained ML-assisted SCA model after
collecting the cache activities. Next, an attacker
computes the similarity sij between img′i and imgj
for all images from IMG, with a similarity metric,
such as SSIM [38]. To locate the image processed
by the victim, an attacker selects the imgj with the
highest sij as the guess candidate. We say img′i is
distinguishable from IMG if and only if j = i.

Distinguishability Evaluation Results. We evaluate the
distinguishability of the replicated results with the first
10,000 images in the test set. Specifically, we build IMG

TABLE 3. REPLICATED RESULTS DISTINGUISHABILITY EVALUATION.

N = 10 N = 100 N = 200 N = 500

Base Line 10.0% 1.0% 0.5% 0.2%
Instrumented 41.2% 13.3% 8.9% 5.3%

Practical 9.7% 1.0% 0.5% 0.3%

by randomly selecting 10, 100, 200, and 500 images. We
present the results in Table 3.

The baseline represents the outcome of randomly guess-
ing the candidate. As shown in the table, the framework’s
performance decreases rapidly as the size of the image set
(IMG) increases. Additionally, the performance of analyz-
ing practical activities is close to the baseline, while the
results for instrumented activities are slightly better than it.
This suggests that the images produced by the framework
have limited distinguishability from other images in the
dataset. In other words, the framework tends to generate
new images rather than reconstruct existing images. We note
that since the results of analyzing instrumented activities are
better than the baseline, it means that the Manifold-SCA
framework has, but limited, ability to reconstruct images
from cache activities.
Results Reasoning. We hypothesize that the framework’s
tendency to generate new images is a consequence of its
architectural design. Recall that the framework is trained
with discriminators in a manner similar to train generative
adversarial networks (GANs) [26]. Since GANs are known
for generating new data, it is possible that these two dis-
criminators guide the framework to generate new images
rather than reconstruct existing ones.

4.2. An Alternative View of Image Reconstruction

Cache attacks work by first observing the cache activ-
ities produced by the victim software and then building
a relationship between them and secrets. That is, we can
consider the cache activities x̃ as a transformation of secret
inputs x, and the procedure can be written as x̃ = T (x).
Since it is a transformation, x̃ is an interpretation of x.
However, compared to x whose each value is a secret,
x̃ contains noises that are not related to x. For instance,
cache activities that are not generated by processing pixels,
or impact from other processes running in parallel. Side-
channel analysis is a procedure of reconstructing x from
x̃. Being inspired by the autoencoder in the Manifold-SCA
framework, we find this procedure is similar to the denoise
task of autoencoder [32].
Autoencoder for Denoise. An autoencoder can be used
to denoise data, which works as follows. Given an input
data x and a corruption process C, the corrupted data is
x̃ = C(x). It first extracts a representation hx̃ = f(x̃)
from an encoding function f . Next, it tries to reconstruct
it back to x ≈ g(hx̃) by a decoding function g. Its objective
is to learn the probability distribution preconstruct(x|x̃) by
pdecoder(x|h(x̃)). In other words, an autoencoder extracts a



meaningful representation for x from x̃ and decodes it back
to x.
Autoencoder and SCA. We note that the denoise proce-
dure is similar to side-channel analysis. The transformation
process T can be seen as a corruption process C, which
introduces noises but still contains features of the original
data. In the context of reconstructing images from cache
activities, the noises are cache activities that are not related
to pixels, and the features are cache activities that are caused
by processing pixels. Hence, the reconstruction process can
be considered as a denoise task where the corruption process
C is replaced by the pixel processing process T . Therefore,
we hypothesize that an autoencoder is sufficient for recon-
structing images from cache activities.

In the next section, we validate this hypothesis through
three ablation studies on the Manifold-SCA framework.
We show that a single autoencoder outperforms Manifold-
SCA in reconstructing images that are more similar to their
reference images but less similar to the others. We note that
the autoencoder used in the Manifold-SCA framework is
enhanced by an attention module. However, it still aligns
with the definition of an autoencoder, which encodes data
to a latent space and decodes it back to the original data to
minimize the differences between the encoded and decoded
data [32]. Therefore, we use autoencoder to represent the
autoencoder implemented in the Manifold-SCA framework
in the following sections.

5. Ablation Study

In this section, we conduct three ablation studies to
show an autoencoder is sufficient to reconstruct images from
instrumented cache activities, while the discriminators in
the Manifold-SCA framework misguide it to generate new
images.

5.1. Instrumented Cache Activities under White-
box Scenario

To better explain the results of ablation studies, we elim-
inate uncertainties from analyzing cache activities caused
by the entire image decompression process (black-box sce-
nario) and focus on those caused by processing image pixels
only (white-box scenario).

Previous works [19, 18] have demonstrated that pixel-
related activities can be exploited to reconstruct images.
Therefore, it is reasonable to assume that a deep-learning
model can automate this procedure. The only question is
how well each model can perform, which reflects the impact
of each component in the framework.

In a nutshell, the leaky function is invoked 384 times
to process an image of 128 × 128 pixels. 256 times are
for the Y channel (black-white value) and 64 times each
for the Cb (blue pixel) and Cr (red pixel) channels. Within
each invocation, it processes 8x8 pixels by looking up the
same table with pixel values. The function will skip the rest
seven pixels of a row if they are the same as the first pixel.

Therefore, the total number of pixel-related cache activities
is variable, with a maximum of 24,576 (384 × 64). More
information can be found in previous works [19, 18].

For the study, we collect pixel-related cache activities
by instrumenting the leaky function in libjpeg-turbo
library. We represent the activities of decompressing each
image as a matrix of 384× 64, where each row contains all
accesses made by one invocation, and each value represents
the accessed cache set. Since the L1D cache has 64 sets,
we use values from 0 to 63 to denote cache sets accessed
by the function and 64 to denote skipped accesses.

5.2. Decoupling the Manifold-SCA Framework

We decouple the Manifold-SCA framework into three
components.
Reconstructor (R) The first component we evaluate is
the reconstructor of the Manifold-SCA framework, which
we refer to as R. It consists of a classic autoencoder (AE)
model enhanced by a Convolutional Block Attention Module
(CBAM) [33]. It functions as a classic autoencoder, which
encodes cache activities to a latent space and decodes them
into images. Adding attention mechanisms improves its
performance by capturing spatial and channel-wise attention
to the activities. We note that while CBAM affects the
autoencoder’s performance, it does not change the nature
of the model. Following the loss function designed by the
Manifold-SCA framework, we train R with Mean Squared
Error (MSE) loss [40]:

LR = MSE(IMG′, IMG)

where IMG′ is the output of the decoder and IMG is its
reference image.
Reconstructor with DTF Discriminator (R-DTF ). The
second component we evaluate is the DTF discriminator. It
distinguishes whether an image is generated by the recon-
structor or originates from the train set. Therefore, its output
is binary, and we employ Binary Cross-Entropy (BCE) [41]
loss to train it. To measure its influence, we construct a
generative network with R and DTF and refer to it as R-
DTF . Since the reconstructor needs to pass the test of DTF ,
we build loss functions as follows:

LDTF
= BCE(Predict, Label)

LG−DTF
= 100 · LR + LDTF

where predict is the prediction made by the discriminator
and Label is the ground truth.
Reconstructor with DID Discriminator (R-DID). The
third component we evaluate is the DID discriminator. It
predicts the identity of the individual in an image, constitut-
ing a multi-class classification problem. Hence, we employ
Cross-Entropy (CE) [42] loss to train it. To access its
impact, we construct a generative network with R and DID,
denoted as R-DID. Similar to the loss function of R-DTF ,
we build loss functions as follows:

LDID
= CE(Prediction, Label)

LG−DID
= 100 · LR + LDID
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Figure 2. Performance variations after each epoch in the first ablation study.

TABLE 4. COMPREHENSIVE EVALUATION FOR THE FIRST ABLATION
STUDY.

R DTF DID
Analysis ∆

SSIM Face++ DIS SSIM Face++ DIS

✓ ✓ ✓ 0.37 43.8 94.4 - - -

✓ ✓ 0.36 37.2 91.3 0.01↓ 6.6↓ 3.1↓
✓ ✓ 0.45 65.5 96.7 0.08↑ 5.8↑ 2.3↑
✓ 0.45 67.7 97.0 0.08↑ 7.9↑ 2.6↑

SSIM represents the average SSIM score of the test set.
Face++ represents the face matching rate (%).
DIS represents the success rate (%) of distinguishability evaluation.
∆ represents the change in performance compared to the baseline.

5.3. Study 1: Reconstruction or Generation

In the first ablation study, we aim to understand the
impact of each component on the framework’s output, par-
ticularly in terms of either reconstructing or generating
images from cache activities.
Experiment Design. We decouple the Manifold-SCA
framework into three models: R, R-DTF and R-DID, and
train them to reconstruct images from instrumented cache
activities under a white-box scenario. For comparison, we
also train the full Manifold-SCA framework (R-DTF -DID)
to analyze the same cache activities.
Dataset. We construct the train and test sets with images
from the CelebA dataset [36] and their corresponding cache
activities, formatted as matrices of 384 × 64. The training
set comprises 162,770 images and their associated cache
activities, while the test set consists of 19,962 images and
their cache activities. Each image is cropped to center the
faces and resized to 128× 128 pixels.
Model Training. We train models on an NVIDIA RTX
A6000 GPU with 48GB memory. Each experiment runs
for 50 epochs, with performance evaluations on the test
set conducted after each epoch. To determine the optimal
training point, we measure the SSIM score between each
output and its corresponding reference image, selecting the
model from the epoch that achieves the highest average
SSIM score as the final model. We leave mode details about
model implementations and training process in Appendix
C.1.
Results Overview. We present the SSIM score variations
over the number of epochs in Figure 2. According to
the figure, models incorporating DTF consistently perform
worse than those without it. Meanwhile, R+DID performs
similarly to R. These suggest that DTF negatively impacts

the framework by producing images less similar to the
references, while DID has limited impact on the results.
Comprehensive Evaluation. We now conduct a compre-
hensive performance evaluation using three metrics: SSIM
score, face matching rate (with Face++), and distinguisha-
bility rate. We use previous two metrics to evaluate the
similarity between reconstructed images and their refer-
ences, and the last metric to evaluate the distinguishability
of them. Overall, we evaluate the first 10,000 images from
the test set with the selected final models. The results are
presented in Table 4. First, we observe that R achieves
the best performance across all metrics. This indicates that
an autoencoder, R, is sufficient to reconstruct images that
are similar to the reference ones but different from others.
Second, the performance of R +DID is similar to that of
R, proving that the DID component is not essential. In the
end, the inclusion of DTF significantly degrades model’s
performance across all metrics. This demonstrates that DTF

substantially affects the training of the autoencoder, guiding
it to generate images that are less similar to corresponding
references.
Discussion. We notice that all models perform well, with
some variance in their performance, in the distinguishability
analysis. This indicates that they are all capable of analyzing
cache activities to reconstruct images. This is expected, as
each model includes an autoencoder (R), which effectively
compresses inputs (cache activities) into meaningful rep-
resentations (pixel-related information) and decodes them
back to images. However, the addition of discriminators
affects the training of the autoencoder. Since the autoencoder
needs to compete discriminators by approximating the train-
ing data distribution, it deviates from merely reconstructing
images to generating images that can satisfy the discrimi-
nators.

We note that since the analyzed cache activities only
contain pixel-related information, it is relatively easy for a
deep-learning model to learn from them and reconstruct im-
ages. Therefore, the performance improvement by removing
discriminators is limited in this context. However, as we
will show in the third ablation study, removing discrimi-
nators can significantly improve the performance in more
challenging tasks.

5.4. Study 2: Performance Improvement

After confirming that an autoencoder is sufficient to
reconstruct images, we conduct the second ablation study to
discuss potential ways to improve its performance. Specifi-
cally, we evaluate two modifications proposed by a follow-
up work on the Manifold-SCA framework [35].
Two Changes of the Manifold-SCA Framework. Yeh and
Sekiya [35] claim to achieve better performance in recon-
structing images by making two changes to the Manifold-
SCA framework. First, the authors replace the 2D convo-
lutional layers in the encoder of the autoencoder with 1D
convolutional layers. 2D convolutional layers use an h×w
filter, where h > 1, to extract features from an input,
while 1D convolutional layers use a 1 × w filter to extract
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Figure 3. Performance variations after each epoch in the second ablation
study.

features from an input. Second, the authors preprocess cache
activities using one-hot encoding, instead of representing
them as numeric data. That is, each cache index is treated
as categorical data and converted to a binary vector of 64
values. If a cache set is accessed, the corresponding value
in the vector is set to one, while the rest are set to zero. For
instance, an access to the first cache set, typically repre-
sented as zero in numeric data, would be represented as [1,
0, 0, ..., 0] in one-hot-encoded data. While the authors claim
both changes improve the performance of the Manifold-SCA
framework, concrete evidence to support these claims are
not provided.
Experiment Design. To apply the first change, we follow
Yeh and Sekiya [35]’s work to implement 1D convolutional
layers in the encoder. To apply the second change, we
one-hot encode the cache activities used in the first abla-
tion study. We satisfy two changes by implementing four
different reconstructors: R2d−num, R1d−num, R2d−oh, and
R1d−oh. Therefore, we have four experiments in this study:
❶ Analyze numeric data with R2d−num, ❷ Analyze numeric
data with R1d−num, ❸ Analyze one-hot-encoded data with
R2d−oh, and ❹ Analyze one-hot-encoded data with R1d−oh.
Since experiment ❶ has been done in the first ablation study,
we reuse its results as the baseline.
Dataset. We reuse the dataset being used in the first
ablation study. In addition, we preprocess cache activities
with one-hot encoding for the last two experiments. This
preprocessing enlarges the size of each input by 64 times,
as each numeric value is converted to a binary vector of
64 values. Consequently, we shape each cache activity as a
matrix of 24576× 64, whereas it used to be 384× 64.
Model Training. We detail the implementations of four
reconstructors in the Appendix C.2. Same to the first
ablation study, we train each model 50 epochs and select
the model with the highest average SSIM score as the final
model.
Results Overview. We present the performance changes
with the number of epochs in Figure 3. As shown in the
figure, the autoencoder analyzes one-hot-encoded data better
than numeric data, regardless of the encoder design. How-
ever, using 1D convolutional layers in the encoder decreases
the performance for both representations of activities, espe-
cially for numeric data.
Comprehensive Evaluation. We present the comprehen-
sive evaluation results in Table 5. According to the table, we
observe that the autoencoder performs best with 2D convo-

TABLE 5. COMPREHENSIVE EVALUATION FOR THE SECOND ABLATION
STUDY.

Encoder Activity Analysis ∆

1D 2D NUM OH SSIM Face++ DIS SSIM Face++ DIS

✓ ✓ 0.45 67.7 96.9 - - -

✓ ✓ 0.44 54.9 94.6 0.01↓ 12.8↓ 2.3↓
✓ ✓ 0.48 74.5 99.1 0.03↑ 6.8↑ 2.2↑

✓ ✓ 0.51 80.5 99.9 0.06↑ 12.8↑ 3.0↑

lutional layers and one-hot-encoded activities in all metrics.
This indicates that images reconstructed under this setting
have the highest similarity to the reference images and are
the most distinguishable from the others. Conversely, we
confirm that using 1D convolutional layers does not improve
performance for either activity representations. However,
since R1d−oh (at 3nd row) performs better than R2d−num (at
2nd row), we conclude that one-hot encoding activities can
compensate the drawback of using 1D convolutional layers.
Discussion. Through this ablation study, we demonstrate
that proper preprocessing cache activities can significantly
improve the performance of ML-assisted SCA. According
to Yeh and Sekiya [35]’s explanation, one-hot encoding
activities shift the model’s focus from numerical differences
to categorical differences. That is, accessing the first cache
set and the last cache set (0 vs 63 in numeric) are treated
equally with one-hot encoded data, as they just represent
access to different categories (cache sets). However, our
experimental results do not support their explanation re-
garding the advantage of using 1D convolutional layers. We
believe the contribution of this ablation study goes beyond
improving the performance of a model. More importantly,
we emphasize that despite having “theoretical” explanations,
experimental evidence is essential in designing and evaluat-
ing ML-assisted SCA methodologies.

5.5. Ablation Study 3: Autoencoder under Black-
box Scenario

So far, we have verified that an autoencoder is sufficient
to reconstruct images from pixel-related cache activities.
However, its advantage over the Manifold-SCA framework
is not apparent due to the simplicity of white-box tasks. In
this study, we demonstrate the advantage of an autoencoder
under a black-box scenario, which is a more challenging
task than the white-box scenario.
Experiment Design. To fairly compare the performance
of a single autoencoder with the Manifold-SCA framework,
we reuse the implementations from previous works [12, 35].
Specifically, we analyze numeric data with the Manifold-
SCA framework implemented by Yuan et al. [12] and one-
hot-encoded data with the framework implemented by Yeh
and Sekiya [35]. We build two autoencoder models by
simply removing the discriminators from their implemen-
tations. Furthermore, we align the loss function of models
by adopting the one designed by Yeh and Sekiya [35],
which uses a combination of MSE and SSIM to measure
the similarity between reconstructed images and reference
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Figure 4. Performance variations after each epoch in the third ablation
study.

images. We note that this combination has been proven to
function better than using MSE or SSIM alone by previous
works [43, 44].
Dataset. We build the train and test sets by following the
setting of Yeh and Sekiya [35]’s work. Specifically, the train
set contains 80, 000 images, and the test set contains 19, 962
images. We collect L1D cache activities for decompressing
each image by instrumenting the libjpeg-turbo library.
Since the number of cache activities for each image is not
constant, we pad the activities with zeros to standardize their
size. For numeric data, we keep the shape as 6 × 256 ×
256, consistent with the configuration used in Yuan et al.
[12]’s work. For one-hot-encoded data, we keep the shape
as 300, 000 × 64, consistent with the configuration used in
Yeh and Sekiya [35]’s work.
Model Training. We still train the models on an NVIDIA
RTX A6000 GPU, but reduce the batch size from 100 to 50
due to the incredibly large size of one-hot-encoded data.
Training each epoch for analyzing one-hot-encoded data
takes around 50 minutes and occupying more than 30 GB of
GPU memory. We leave detailed information about model
implementations in Appendix C.3.
Results Overview. We present the performance changes
across epochs in Figure 4. We use AE to represent a
single autoencoder and AE+D to represent an autoencoder
with discriminators, which corresponds to the Manifold-
SCA framework. NUM and OH denote numeric data
and one-hot-encoded data, respectively. As shown in the
figure, the performance gap between an autoencoder and
the Manifold-SCA framework is more pronounced in the
black-box scenario than in the white-box scenario. It in-
dicates that the autoencoder produces images more similar
to the reference images than the Manifold-SCA framework
does. Additionally, we observe a significant performance
improvement when using one-hot-encoded activities. This
observation reinforces the conclusion drawn from the second
ablation study that one-hot-encoding activities improve the
performance of the autoencoder.
Comprehensive Evaluation. We present the comprehen-
sive evaluation results in Table 6. The baseline is set using
the results of analyzing numeric data with the Manifold-
SCA framework, as this was the initial general framework
proposed for analyzing cache activities [12]. First, we ob-
serve that Manifold-SCA cannot produce distinguishable
images with 80, 000 training images as its distinguishability
evaluation result is close to a random guess (0.2%). This

TABLE 6. COMPREHENSIVE EVALUATION FOR THE THIRD ABLATION
STUDY.

Model Activity Analysis ∆

AE+D AE NUM OH SSIM Face++ DIS SSIM Face++ DIS

✓ ✓ 0.12 7.9 0.3 - - -

✓ ✓ 0.19 15.2 4.4 0.07↑ 7.3↑ 4.1↑
✓ ✓ 0.25 30.5 55.1 0.13↑ 22.6↑ 54.8↑

✓ ✓ 0.35 41.7 74.2 0.23↑ 33.8↑ 73.9↑

could be because the amount of training data is insuffi-
cient to train the model. In our replicability evaluation, we
used 162,770 training images, while here, we use 80,000
training images. However, as shown in the second row, the
performance of analyzing numeric data is improved around
twice by using an autoencoder alone. This indicates that the
Manifold-SCA framework is harder to train and performs
worse than an autoencoder. Second, we find that while the
Manifold-SCA framework can reconstruct images from one-
hot-encoded data, its performance is still inferior to that of
an autoencoder. Specifically, the distinguishability of images
is increased by 34.7% when using an autoencoder alone. In
summary, we prove that a single autoencoder can reconstruct
images more similar to reference images while being less
similar to others compared to the Manifold-SCA framework.
It confirms that an autoencoder is sufficient to analyze cache
activities to reconstruct images.

5.6. Discussion

Through three ablation studies, we demonstrate that a
single autoencoder outperforms the Manifold-SCA frame-
work in reconstructing images not only from pixel-related
activities but also from more complex cache activities. This
aligns with our discussion in Section 4.2, where we an-
ticipated such results. Since pixel-related cache activities
are a transformation of pixel values, it is expected that an
autoencoder can find a meaningful representation to convert
them back to images. In a black-box scenario, instrumented
cache activities contain activities that do not depend on
pixel values, which can be considered as noises. Here, the
autoencoder functions as a denoiser, effectively removing
the noise and reconstructing images from the pixel-related
activities. While we only demonstrate the advantage of the
autoencoder in the context of reconstructing images from
cache activities, we hypothesize that it can be applied to
most SCA scenarios where side-channel activities contain
enough secret-dependent information (pixel, in this case).

6. Analyze Practical Cache Activities

After showing that an autoencoder is sufficient to recon-
struct images from instrumented cache activities, we now
investigate how it performs in analyzing practical cache ac-
tivities. Compared to instrumented cache activities, practical
cache activities are more complex and noisier. Therefore,
we first evaluate how an autoencoder denoises and extracts
pixel-related cache activities from practical cache activities.



Then, we evaluate whether the extracted activities are suffi-
cient to reconstruct images. Our results show that the autoen-
coder can reconstruct partial pixel-related cache activities,
but these are insufficient to reconstruct images. However, we
find that the distinguishability of the reconstructed activities
is significantly higher than the reconstructed images.

6.1. Statistical Analysis of Practical Cache Activi-
ties

Before analyzing practical cache activities with an au-
toencoder, we first statistically analyze them to demonstrate
the difference between them and instrumented cache activ-
ities. Specifically, we show that practical activities cannot
capture each pixel-related cache access separately, which
we describe it as information loss.
Collection Results. We collect cache activities, with a
profiling-based Prime+Probe attack, for decompressing im-
ages in the train set (162,770 images) and the test set
(19,962 images) on an Intel Core i7-9750H CPU. Each
phase (prime/probe) measures the latency of accessing 64
L1D cache sets separately and returns a vector of 64 values.
Thus, each vector represents the entire L1D cache activities
between two phases. The number of collected vectors for
decompressing one image varies from 302 to 700, while the
average is 476 and the standard deviation is 17.9.
Results Processing. We do not perform any post-processing
on the collected activities except padding the number of
vectors to 800 with 0s to simplify the autoencoder’s imple-
mentation. We keep cache activities as raw data. Yuan et al.
[12] amplifies the latency of cache misses to facilitate the
classification of cache hits and misses. We find that such
an approach slows down the attack resolution, resulting in
capturing fewer cache activities. We support this claim by
computing the number of vectors returned by the tool of
Yuan et al. [12]. For decompressing one image, their tool
returns an average of 266 vectors, which is even fewer than
the lowest number of vectors returned by our attack.

Furthermore, the amplification reduces the correlation
between the number of collected activities and the number
of pixel-related cache accesses. We compute the correlation
using Pearson correlation coefficient, which ranges from −1
to 1. The results show that the correlation with our activi-
ties is 0.16, whereas the one computed with the amplified
activities is 0.06. This indicates that our activities are more
relevant to the changes in pixels among images. Therefore,
we chose to not amplify the cache miss latency and keep
the activities as raw data.
Information Loss. By analyzing the number of collected
activities, we find that it is significantly fewer than the
number of pixel-related cache accesses (22, 879 on average).
This suggests that each prime and probe phase captures
multiple victim’s cache accesses.

Recall that each phase measures the latency of accessing
64 cache sets and returns a vector of 64 values. Each vector
only indicates whether a cache set is accessed by the victim
(higher latency) or not (lower latency), but not the order of

them. Therefore, the attack loses information regarding the
order of the victim’s cache accesses.

Furthermore, the attack does not capture the number of
accesses to the same cache set between two phases. It is
because only the first victim’s access to a cache set evicts
attacker’s data, and subsequent accesses to the same cache
set do not cause new eviction. We note that access latency
depends on the number of evicted data, and without multiple
evictions, the attack loses information on the number of
victim’ accesses to one cache set.

In summary, practical cache activities suffer from infor-
mation loss as they do not capture the order of the victim’s
accesses and the number of accesses to a single cache set
between each prime and probe phase.

6.2. Reconstructing Pixel-related Cache Activities

In this section, we analyze practical cache activities
with the autoencoder. Similar to most cache attacks on
cryptographic libraries [1, 29, 5, 27, 45, 46, 47], we assume
that an attacker knows how libjpeg-turbo generates
pixel-related cache activities. We first evaluate whether an
autoencoder does aware of pixel-related cache accesses by
identifying cache sets relevant to processing pixels. Next,
we simplify the instrumented cache activities (used in the
first ablation study) according to the information loss and
evaluate the accuracy of reconstructing them from practical
activities. Our results show that although an autoencoder
does aware of pixel-related cache accesses, it has limited
performance in reconstructing instrumented cache activities.
Model Output Design. For the first evaluation, the model’s
output is a vector of 64 values, where each value indicates
the relevance of one cache set to processing pixels. The
value is set to be one if the cache set is relevant and
zero if it is not. For the second evaluation, we simplify
the instrumented cache activities used in the first ablation
study (Section 5.3) according to the information loss in
practical cache activities. Recall that these activities were
shaped as matrices of 384×64, where each row contains all
accesses made by one invocation of the leaky function, and
each value represents the index of accessed cache set. Since
practical activities lose the order of accesses and the number
of accesses to one cache set, we simplify the activities by
removing the order and the number of accesses within each
invocation. Thus, the simplified activities are still shaped
as a matrix of 384 × 64, but each row now represents the
cache status after executing the leaky function once. We set
the corresponding value to one if a cache set is accessed, no
matter how many times, during the invocation; otherwise, it
is zero.
Results of Identifying Pixel-related Cache Sets. We
update the autoencoder model used in the ablation studies to
fit new input and output, and provide detailed information
in Appendix D. We train our model on an RTX 4070ti
GPU and observe that it converges within 15 epochs. Our
evaluation shows that the autoencoder is able to identify all
cache sets relevant to processing pixels with an accuracy
of 68%. This indicates that the autoencoder has a basic



TABLE 7. DISTINGUISHABILITY EVALUATION RESULTS.

N = 10 N = 100 N = 200 N = 500

Baseline 9.7% 1.0% 0.5% 0.3%
Reconstruct Instrumented Activities 96.0% 71.5% 58.7% 41.7%

Reconstructed Images 16.6% 2.7% 1.5% 0.7%

understanding of practical cache activities and can locate
cache sets relevant to processing pixels.
Results of Reconstructing Simplified Instrumented
Cache Activities. We now evaluate how well an autoen-
coder reconstructs simplified instrumented cache activities.
Since its output is a matrix of 384 × 64, we evaluate
performance by counting the number of rows that are exactly
the same as those in the simplified instrumented cache
activities. Our evaluation shows that the autoencoder is able
to reconstruct cache activities with 34% of its rows being
exactly the same as the ground truth. This indicates that an
autoencoder can reconstruct partial pixel-related cache ac-
cesses from practical activities. However, the performance is
limited, as more than half of the rows are not reconstructed
correctly.

6.3. Reconstructing Images from Reconstructed
Activities

After reconstructing simplified pixel-related cache ac-
cesses from practical activities, we now investigate whether
they are sufficient to reconstruct images. To do so, we
first train an autoencoder to learn the mapping between
the simplified instrumented activities and pixels. Then, we
utilize the pre-trained model to reconstruct images from the
reconstructed activities.
The Pre-trained Model. The pre-trained model analyzes
simplified instrumented cache activities to reconstruct im-
ages. Recall that the simplified instrumented cache activities
omit the order of cache accesses and the number of accesses
to one cache set, which contains less information than the
instrumented cache activities used in the first ablation study.
To our surprise, the model achieves an average SSIM score
of 0.46 and a 98.5 success rate for distinguishability evalua-
tion when N = 500. This indicates that the model is able to
overcome the information loss in the simplified activities and
reconstruct high-quality images. The excellent performance
of the pre-trained model guarantees the reliability of the
following evaluation. Namely, if the number of correctly
reconstructed cache activities is sufficient to reconstruct
images, the pre-trained model should be able to reconstruct
images from them.
Results of Reconstructing Images. We utilize the pre-
trained model to reconstruct images from the reconstructed
activities. The results show that the pre-trained model is
able to reconstruct images with an average SSIM score of
0.18. However, as we will discuss in the next section, the
distinguishability between reconstructed images is extremely
low, which indicates that the model fails to reconstruct
images from practical cache activities.

6.4. Distinguishability Evaluation

We now present the results of distinguishability evalua-
tion for the reconstructed activities and images. As a com-
parison, we also reconstruct images directly from the practi-
cal cache activities (black-box scenario), which achieves an
average SSIM score of 0.21. We conduct distinguishability
evaluation with various N for the results of three experi-
ments:

• ❶ reconstructing pixel-related cache accesses from
practical activities;

• ❷ reconstructing images from the reconstructed ac-
tivities;

• ❸ reconstructing images directly from practical ac-
tivities.

We use the replicated results of the Manifold-SCA frame-
work as the baseline for the distinguishability evaluation and
present the results in Table 7.

As shown in the table, although the SSIM score for
reconstructing images directly from practical cache activities
(0.21) is higher than the one achieved with the reconstructed
activities (0.18), both of them achieve the same level of dis-
tinguishability when N = 500. Notably, the distinguishabil-
ity of reconstructed activities is significantly higher than that
of reconstructed images. This confirms that the autoencoder
is able to reconstruct partial pixel-related cache accesses
from practical activities. However, the amount of correctly
reconstructed activities is insufficient to reconstruct images
with distinguishable features.
Discussion. First, it is expected that the autoencoder can
reconstruct partial pixel-related cache accesses, as the entire
process can be considered a denoise procedure. Second,
it is also reasonable that the reconstructed activities are
not sufficient to reconstruct images. The lower bound of
the image reconstruction performance is determined by the
amount of pixel-related information in the cache activi-
ties. When too much pixel-related information is lost, it
is extremely challenging to reasonably deduce the missing
information from the remaining information. We note that
the performance of ML-assisted SCA is not determined
by how advance a machine-learning model is, but by how
much secret-dependent information is contained in the side-
channel activities.

7. Conclusion and Future Work

In this paper, we revisit the first ML-assisted SCA
framework for analyzing media software with a case study
of reconstructing images from cache activities. We first
show that the introduction of a discriminator network in
the framework misguides the framework to generate images
rather than reconstruct them. We emphasize the importance
of reconstructing secrets in ML-assisted SCA, as the goal
of side-channel analysis is to reconstruct the victim’s data
but not to generate new data. We propose to not only
measure the similarity between a reconstructed image and its
reference image but also between it and other images. With



the new evaluation metric, we conduct ablation studies to
demonstrate that an autoencoder is sufficient to reconstruct
images from cache activities. This finding first confirms our
hypothesis about side-channel analysis and the denoise task
of an autoencoder. Second, it provides a new perspective on
the design of ML-assisted SCA methodologies. We demon-
strate that an SCA task can be converted to a classic machine
learning task, which can be efficiently solved with well-
developed machine learning theories and models. Finally, we
investigate how an autoencoder performs in analyzing prac-
tical cache activities. We show that due to the information
loss in practical cache activities, an autoencoder can only
reconstruct partial pixel-related cache accesses, which are
insufficient to reconstruct images. We believe our experience
reported in this paper can benefit future research in ML-
assisted SCA and side-channel analysis.
Future Work. In this paper, we have only analyzed the
performance of an autoencoder in reconstructing images
from cache activities. Although an autoencoder has the
potential to analyze more activities for different side-channel
analysis tasks, we have not yet proved its performance in
other tasks. Therefore, we plan to apply autoencoder to other
side-channel analysis tasks in the future. Furthermore, to
facilitate the community’s advance in ML-assisted SCA, it
is important to build a benchmark dataset, including both in-
strumented and practical cache activities, so that researchers
can evaluate their methodologies in a consistent manner. We
also leave this as a future work.

References

[1] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: The case of AES,” in CT-RSA,
vol. 3860, 2006, pp. 1–20.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre at-
tacks: Exploiting speculative execution,” in S&P, 2019,
pp. 1–19.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading ker-
nel memory from user space,” in USENIX Security,
2018, pp. 973–990.

[4] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-
order execution,” in USENIX Security, 2018, pp. 991–
1008.

[5] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014, pp. 719–732.

[6] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,”
in S&P, 2015, pp. 605–622.

[7] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mit-
tal, Y. Oren, and Y. Yarom, “Robust website finger-

printing through the cache occupancy channel,” in
USENIX Security, 2019, pp. 639–656.

[8] J. Cook, J. Drean, J. Behrens, and M. Yan, “There’s
always a bigger fish: a clarifying analysis of a machine-
learning-assisted side-channel attack,” in ISCA, 2022,
pp. 204–217.

[9] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+probe 1, javascript 0:
Overcoming browser-based side-channel defenses,” in
USENIX Security, 2021, pp. 2863–2880.

[10] R. Wang, M. Brisfors, and E. Dubrova, “A side-channel
attack on a higher-order masked crystals-kyber imple-
mentation,” in ACNS, 2024, pp. 301–324.

[11] E. Dubrova, K. Ngo, J. Gärtner, and R. Wang, “Break-
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Appendix

1. The Undocumented Model: Refiner

The first inconsistency we identify is the utilization of
an undocumented deep-learning model to enhance images
generated by the framework. We denote this model as the
Refiner, as it refines the framework’s outputs. Although this
model can be “optionally” disabled by setting a flag, we
discover that it is hardcoded to always be enabled (GitHub
Link). In other words, without modifying the source code,
the undocumented model is inadvertently applied to refine
the framework’s results.
How It Works. The Refiner works similar as an AE-
GAN model [22]. Its inputs are the reconstructed images
produced from the Manifold-SCA framework. The Refiner
then refines these images to produce outputs that deceive
the discriminator into believing they are original, rather than
artificially generated. Figure 5 shows two examples of the
visual changes made by the Refiner, generated from data and
pre-trained models provided by the artifact. As illustrated,
the Refiner enhances images by reducing blurriness and
adopting a style similar to that of the original images.
Reconstructed Features Preservation. In addition to al-
tering the visual appearance of images, we observe that the
Refiner also modifies the features of reconstructed images.
Given that the evaluation dataset comprises face images of
celebrities [36], the features present in the reconstructed
images include facial attributes such as eyes and noses.
These features can be abstracted to represent the identity
of the person in the image. Notably, the Manifold-SCA

https://github.com/0xAde1a1de/Mastik
https://www.faceplusplus.com/
https://www.faceplusplus.com/
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/a914a4020d9f9f725ac4713772bf309f07b2b1c6/code/output.py#L208
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framework also leverages personal identity information to
generate images.

We evaluate whether the Refiner preserves the features
of reconstructed images by examining if the identity of the
person in an image is changed. We use the same evaluation
metric as Yuan et al. [12], which queries a commercial face
comparison API, Face++ [37], with two images. The API
returns a confidence score and three confidence thresholds
to indicate if two images are from the same person with
different error rates. We follow the paper [12] to use the
0.1% error rate threshold.

We conduct the evaluation by generating images from
all cache activities provided by the artifact, totaling 1,000
for each type. We find that more than half of them have their
identities changed after refinement. Specifically, only 41.7%
of the images generated from instrumented activities and
46.4% of those generated from practical activities preserve
their identities. This indicates that the Refiner is likely to
alter the reconstructed features, leading to changes in the
identity of an image.

2. Process Practical cache Activities

Practical cache activities are collected by a profiling-
based L1D Prime+Probe attack [6], which fills the entire
L1D cache (64 sets) with attacker’s data and measures
the time of accessing each of them. Therefore, each phase
(prime/probe) returns a vector of 64 timing results, indicat-
ing the latency of revisiting each cache set. When a cache set
is not accessed by the victim, the latency is relatively lower
as the attacker’s data remains in the L1D cache. Otherwise,
the latency will be higher as the attacker needs to fetch data
from lower-level caches, which costs more time. The former
scenario is often referred to as a cache hit and the latter as
a cache miss.

To find a threshold to distinguish two scenarios, we
first need to know the distribution of the timing results.
Therefore, we collect the data by profiling the cache activity
of decompressing 1,000 CelebA images on an i7-9750H
processor. The decompression is conducted by the libjpeg-
turbo library 2.0.6, which is the same as the one used by
the artifact.

We present the distribution of the timing results in Fig-
ure 6. According to the figure, the timing results are mainly
distributed in two clusters, lower than 30 or higher than 60
cycles, indicating the distribution of cache hits and misses.
Usually, the timing difference, which is known as L1D miss
penalty, should be much smaller than 30 cycles. However,
we notice that the customized Prime+Probe attack used by
Yuan et al. [12] amplifies the cache miss. Specifically, it
evicts the entire cache set, which contains eight cache lines,
when only one cache line is evicted. Therefore, an attacker
always has to fetch all eight cache lines from the lower-level
cache, even if only one of them is evicted by the victim. It
amplifies the cache miss penalty with roughly eight times,
resulting in the two clusters in the figure.

Such an amplification does ease the procedure of finding
the threshold, as the timing results are more distinguishable.
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Figure 6. The timing distribution of priming and probing each cache set
for decompressing 1,000 CelebA images.

TABLE 8. BASIC MODELS

Model Layer

basic 2D conv Conv2d(in, out, [kx, ky ], [sx, sy ], pad)
BatchNorm2d(out)
LeakyReLU(0.2, inplace=True)
CBAM(out)

basic 2D conv Denc Conv2d(in, out, [kx, ky ], [sx, sy ], pad)
BatchNorm2d(out)
LeakyReLU(0.2, inplace=True)

basic Resnet ReflectionPad2d(1)
Conv2d(out, out, k=3, bias=False)
BatchNorm2d(out)
ReLU(True)
ReflectionPad2d(1)
Conv2d(out, out, k=3, bias=False)
BatchNorm2d(out)

basic 2D convT ConvTranspose2d(in, out, k, s, pad)
BatchNorm2d(out)
ReLU(True)
basic Resnet(out)

basic Rdec basic 2D convT(128, 128, 4, 1, 0)
basic 2D convT(128, 128, 4, 2, 1)
basic 2D convT(128, 128, 4, 2, 1)
basic 2D convT(128, 128, 4, 2, 1)
basic 2D convT(128, 128, 4, 2, 1)
ConvTranspose2d(128, 3, 4, 2, 1)
Tanh()

basic 1D conv Conv1d(in, out, k)
MaxPool1d(4)
BatchNorm1d(out)
LeakyReLU(0.2, inplace=True)

basic Denc Conv2d(3, 64, [4, 4], [2, 2], 1)
LeakyReLU(0.2, inplace=True)
basic 2D conv Denc(64, 128, [4, 4], [2, 2], 1)
basic 2D conv Denc(128, 256, [4, 4], [2, 2], 1)
basic 2D conv Denc(256, 512, [4, 4], [2, 2], 1)
basic 2D conv Denc(512, 512, [4, 4], [2, 2], 1)
Conv2d(512, 128, [4, 4], [1, 1], 0)

basic DTF Linear(128, 100)
ReLU()
Linear(128, 1)
Sigmoid()

basic DID Linear(128, 100)
ReLU()
Linear(128, 10177)
Softmax(dim=1)

In the end, we empirically set the threshold to be 45 cycles,
which is the middle point of the two clusters.

3. Architecture of Machine Learning Models and
Trainings

Table 8 contains all basic components used in construct-
ing models in ablation studies and practical cache activity
analysis.



TABLE 9. MODELS ABLATION STUDY 1

Model Layer

Rstudy1 basic 2D conv(1, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 32, [4, 4], [2, 2], 1)
basic 2D conv(32, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
Conv2d(128, 128, [6, 4], [2, 1], 1)
Tanh()
basic Rdec

Denc basic Denc

DTF basic DTF

DID basic DID

3.1. Ablation Study 1. Optimizer. Adam with learning
rate 2e− 4.
Train R−DTF −DID. Same as Manifold-SCA [12].
Train R − DTF . For each epoch, DTF is trained first
with original (IMGo) and reconstructed (IMGr) images
respectively to correctly distinguish them.

L = BCE(PredictIMGo
, real) and L =

BCE(PredictIMGr
, fake)

Then R is trained with the reconstruction loss and the
punishment loss if the image is identified as a reconstructed
image by DTF .

L = 100 ∗ MSE(IMG′, IMGr) +
BCE(PredictIMGr

, real)
Train R−DID. For each epoch, DID is trained first with
original (IMGo) images respectively to correctly identify
the individual’s ID.

L = CE(PredictIMGo , id)
Then R is trained with the reconstruction loss and the

punishment loss if the individual in the image is incorrectly
identified by DID.

L = 100 ∗ MSE(IMG′, IMGr) +
BCE(PredictIMGr

, real)
Train R. R is simply trained with the reconstruction loss.

L = MSE(IMG′, IMGr)

3.2. Ablation Study 2. Optimizer. Adam with learning
rate 2e− 4.
Training. Since all of four models are single R, they are
trained with the reconstruction loss only.

L = MSE(IMG′, IMGr)

3.3. Ablation Study 3. Optimizer. Adam with learning
rate 2e− 4.
Train Rae−num and Rae−oh. Since both of them are single
R, they are trained with the reconstruction loss only.

L = MSE(IMG′, IMGr)
Train Rae−num+D and Rae−oh+D. Same as Manifold-
SCA [12].

4. Practical Activities Experiments

Optimizer. Adam with learning rate 2e− 4.
Train Rtrace2img and Rreduced2img. Since both of them
are single R, they are trained with the reconstruction loss
only.

TABLE 10. MODELS ABLATION STUDY 2

Model Layer

R1d−num basic 1D conv(64, 64, 6)
basic 1D conv(64, 64, 4)
basic 1D conv(64, 128, 4)
flatten()
Linear(768, 128)
Batchnorm1d(128)
basic Rdec

R1d−oh basic 1D conv(64, 64, 6)
basic 1D conv(64, 64, 4)
basic 1D conv(64, 128, 4)
flatten()
Linear(49152, 128)
Batchnorm1d(128)
basic Rdec

R2d−num basic 2D conv(1, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 32, [4, 4], [2, 2], 1)
basic 2D conv(32, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
Conv2d(128, 128, [6, 4], [2, 1], 0)
Tanh()
basic Rdec

R2d−oh basic 2D conv(1, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 32, [4, 4], [2, 2], 1)
basic 2D conv(32, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 4], [2, 2], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
Conv2d(128, 128, [6, 4], [1, 1], 0)
Tanh()
basic Rdec

TABLE 11. MODELS ABLATION STUDY 3

Model Layer

Rae−num basic 2D conv(1, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 4], [2, 2], 1)
basic 2D conv(128, 256, [4, 4], [2, 2], 1)
basic 2D conv(256, 512, [4, 4], [2, 2], 1)
basic 2D conv(512, 512, [4, 4], [2, 2], 1)
Conv2d(512, 128, [4, 4], [1, 1], 0)
Tanh()
basic Rdec

Rae−oh basic 1D conv(64, 64, 6)
basic 1D conv(64, 64, 4)
basic 1D conv(64, 128, 4)
basic 1D conv(128, 256, 4)
basic 1D conv(256, 512, 4)
basic 1D conv(512, 512, 4)
flatten()
Linear(37500, 128)
Batchnorm1d(128)
basic Rdec

Denc basic Denc

DTF basic DTF

DID basic DID

L = MSE(IMG′, IMGr)
Train Rtrace2reduced. Since it is a single R, it is trained
with the reconstruction loss only.

L = BCE(Reduced′, Reducedr)



Figure 7. The first 10 reconstructed images and their references for all experiments in the paper.



TABLE 12. MODELS PRACTICAL ACTIVITIES EXPERIMENTS

Model Layer

Rtrace2img basic 2D conv(1, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 4], [2, 2], 1)
basic 2D conv(128, 256, [4, 4], [2, 2], 1)
basic 2D conv(256, 512, [4, 3], [2, 1], 1)
basic 2D conv(512, 512, [4, 3], [2, 1], 1)
basic 2D conv(512, 512, [5, 3], [2, 1], 1)
Conv2d(512, 128, [5, 4], [1, 1], 0)
Tanh()
basic Rdec

Rtrace2reduced basic 2D conv(1, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 4], [2, 2], 1)
basic 2D conv(128, 256, [4, 4], [2, 2], 1)
basic 2D conv(256, 512, [4, 3], [2, 1], 1)
basic 2D conv(512, 512, [4, 3], [2, 1], 1)
basic 2D conv(512, 512, [5, 3], [2, 1], 1)
Conv2d(512, 128, [5, 4], [1, 1], 0)
Tanh()
ConvTransposed2d(128, 128, 4, 1, 0)
BatchNorm2d(128)
ReLU(True)
ConvTransposed2d(128, 384, 4, 2, 1)
Sigmoid()

Rreduced2img basic 2D conv(1, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 16, [4, 4], [2, 2], 1)
basic 2D conv(16, 32, [4, 4], [2, 2], 1)
basic 2D conv(32, 64, [4, 4], [2, 2], 1)
basic 2D conv(64, 128, [4, 3], [2, 1], 1)
basic 2D conv(128, 128, [4, 3], [2, 1], 1)
Conv2d(128, 128, [6, 4], [2, 1], 1)
Tanh()
basic Rdec
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